
 

Industrial Engineering and Computer Sciences Division (G2I) 
 
EVOLUTIONARY, CONSTRUCTIVE  

and HYBRID PROCEDURES 
FOR THE BIOBJECTIVE SET PACKING PROBLEM 

 
X. DELORME, X. GANDIBLEUX, F. DEGOUTIN 

 
Septembre 2005 

 
RESEARCH REPORT 

2005-500-011 



 



Evolutionary, constructive and hybrid procedures

for the biobjective set packing problem

Xavier DELORME∗, Xavier GANDIBLEUX†and Fabien DEGOUTIN‡§

Abstract: The bi-objective set packing problem is a multi-objective combinatorial optimiza-
tion problem similar to the well-known set covering/partitioning problems. To our knowledge, this
problem has surprisingly not yet been studied. In order to resolve a practical problems encountered
in railway infrastructure capacity planning, procedures for computing a solution to this bi-objective
combinatorial problem were investigated. Unfortunately, solving the problem exactly in a reasonable
time using a generic solver (Cplex) is only possible for small instances. We designed three alternative
procedures approximating solutions to this problem. The first is based on version 1 of the ‘Strength
Pareto Evolutionary Algorithm’, which is a population based-metaheuristic. The second is an adapta-
tion of the ‘Greedy Randomized Adaptative Search Procedure’, which is a constructive metaheuristic.
As underlined in the overview of the literature summarized here, almost all the recent, effective pro-
cedures designed for approximating optimal solutions to multi-objective combinatorial optimization
problems are based on a blend of techniques, called hybrid metaheuristics. Thus, the third alternative,
which is the primary subject of this paper, is an original hybridization of the previous two metaheuris-
tics. The algorithmic aspects, which differ from the original definition of these metaheuristics, are
described, so that our results can be reproduced. The performance of our procedures is reported and
the computational results for 120 numerical instances are discussed.

1 Introduction

1.1 The bi-objective set packing problem

This study examines approximate solutions to the bi-objective set packing problem (biSPP). The set
packing problem (SPP) is a classic optimization problem, close to the set covering and set partioning
problems (see, for example, Nemhauser and Wolsey [34]). The SPP can also be viewed as a special
case of the multi-dimensional 0-1 knapsack problem, but this property is rarely useful for resolving
the problem due to the large number of constraints in SPP instances. Surprisingly, the SPP has not
received a lot of attention in the literature, and the biSPP even less. Compared to set covering and
set partitioning problems, very few studies have looked at SPP resolution. The initial impetus for
our research came from a real railway problem which has been formulated as a multi-objective SPP
by Delorme [6]. The principal concerns in Delorme’s study are related to evaluating infrastructure
capacity in a railway network. However, this paper does not target resolution of this specific railway
problem, but rather resolution of any biSPP instance.

The biSPP can be described as follows, using a mathematical model. Given a finite set I =
{1, . . . , n} of valuated items and {Tj}, j ∈ J = {1, . . . ,m} a collection of subsets of I, a solution is
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§LAMIH-ROI - UMR CNRS 8530, Université de Valenciennes, Campus “Le Mont Houy”, F59313 Valenci-

ennes Cedex 9 - FRANCE



a subset R ⊆ I, such that |Tj ∩ R| ≤ 1,∀j ∈ J . The objective of the set packing problem with two
objectives q ∈ Q = {1, 2} is to “maximise” the total value of the solution obtained. The biSPP model
is summarized as (1):


“ max ”zq =

∑
i∈I

cq
i xi ∀q ∈ Q

sc
∑
i∈I

ti,jxi ≤ 1 ∀j ∈ J

xi ∈ {0, 1} ∀i ∈ I
ti,j ∈ {0, 1} ∀i ∈ I,∀j ∈ J

 (1)

given:

• a vector (xi) where xi = 1 if i ∈ R, and 0 otherwise,
• a vector (cq

i ) where cq
i = the value of item i for the objective function q,

• a matrix (ti,j) where ti,j = 1 if i ∈ Tj , and 0 otherwise.

The biSPP is a multi-objective combinatorial optimization (MOCO) problem. In Ehrgott and
Gandibleux’s survey [9], no paper considering this problem is mentioned. According to Garey and
Johnson [23], the problem is strongly NP-Hard even in the mono-objective case.

Let X = {x |
∑

i∈I ti,jxi ≤ 1 ∀j ∈ J ; xi ∈ {0, 1} ∀i ∈ I; ti,j ∈ {0, 1} ∀i ∈ I,∀j ∈ J} denote
the feasible solutions, or the decision space. We consider that solutions for (1) are optimal if they are
efficient. In other words, a feasible solution x ∈ X is deemed efficient if there is no x′ ∈ X, such that
x′ dominates x, in the sense of Pareto dominance (i.e., zq(x′) ≥ zq(x) for all q ∈ Q with zq(x′) > zq(x)
for some q; the notation x′ � x will be considered later). This means that no solution is at least as
good as x for all objectives, and none is strictly better for at least one objective. Efficiency refers
to solutions x in the decision space. We denote the image of the feasible set in the objective space
as Z = z(X). In the objective space, we consider the notion of non-dominance: if x is an efficient
solution, then z(x) = (z1(x), . . . , z|Q|(x)) is a non-dominated vector. The set of efficient solutions
is XE ; the set of non-dominated vectors, ZN . ZN is also called the non-dominated frontier, or the
trade-off surface. As in most MOCO problems, XE is composed of two solutions subsets: XSE , the
set of supported efficient solutions, and XNE , the set of non-supported efficient solutions.

When multiple feasible solutions x, x′ ∈ X map to the same non-dominated point z(x) = z(x′),
the solutions are said to be equivalent. A complete set XE is a set of efficient solutions, such that all
x ∈ X \ XE are either dominated or equivalent to at least one x ∈ XE . This means that for each
nondominated point z ∈ ZN , there is at least one x ∈ XE such that z(x) = z. A minimal complete
set XEm

is a complete set without equivalent solutions (see Hansen [26]). All complete sets contain a
minimal complete set. The maximal complete set XEM

is a complete set of all solutions, including all
the equivalent solutions (i.e., all x ∈ X \XEM

are dominated, see Przybylski et al. [36]).

In this study, the minimum complete set of efficient solutions was computed with Cplex for all the
instances considered (see section 5.1 for details about these 120 instances). But given the difficulty of
this problem, its exact resolution was not possible within a reasonable period of time: the solutions
were obtained after several days of computation. From the exact solution sets, three main ideas are
noteworthy. First, in general, the biSPP has a low number of efficient solutions, compared to other
problems, such as the knapsack with two objectives for which Visée et al. [43] report a huge number
of solutions. Second, Degoutin [4] and Ehrgott and Gandibleux [11] have shown that the bound sets
obtained using linear relaxation and a greedy algorithm are very far from the efficient frontier and do
not provide useful information about the frontier (see figure 1). Third, in general, the shape of the
efficient frontier observed in this study was not globally convex, which is not true of the knapsack or
the assignment problems with two objectives.

The amount of time needed by Cplex to compute solutions for the instances led us to investigate
the possibility of solving the biSPP using heuristics. For practical reasons related to our railway
planning problem, our goal was to obtain a good approximation of the entire efficient set – denoted
XPE , the set of potentially efficient solutions – within a reasonable computing time.
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Figure 1: Example of efficient frontier and bound sets

1.2 Multi-Objective metaheuristics (MOMH) and MOCO problems

Although the first adaptation of metaheuristic techniques for solving multi-objective optimization
problems was introduced 20 years ago, the MOMH field has clearly mushroomed over the last ten
years (see Ehrgott and Gandibleux [10] for a detailled analyze of the literature on that topic). His-
torically, pioneer approximation methods for multi-objective problems first appeared in 1984. The
most important are listed here in order of publication: Genetic Algorithms (GA, Schaffer 1984 [38]),
Artificial Neural Networks (ANN, Malakooti et al. 1990 [30]), Simulated Annealing (SA, Serafini 1992
[39]), and Tabu Search (TS, Gandibleux et al. 1997 [18]). These pioneer methods have one common
characteristic: they are inspired either by Evolutionary Algorithms, such as VEGA (Vector Evalu-
ated Genetic Algorithm, see Schaffer [38]) or MOGA (Multi-Objective Genetic Algorithm, see Fonseca
and Fleming [14]), or by Neighborhood Search Algorithms, such as MOSA (Multi-Objective Simulated
Annealing, see Ulungu [41]) or MOTS (Multi-Objective Tabu Search, see Gandibleux et al. [18]).

Evolutionary Algorithms (EA) manage a solution population P rather than a single feasible so-
lution. In general, they start with an initial population and then improve approximation quality by
combining the principles of self adaptation (i.e. independent evolution, such as the mutation strategy
in genetic algorithms), and cooperation (i.e. the exchange of information between individuals, such
as the “pheromone” used in ant colony systems). Because the whole population contributes to the
evolutionary process, the generation mechanisms run parallel along the frontier, and thus these meth-
ods are also called global convergence-based methods. This global convergence makes population-based
methods very attractive for solving multi-objective problems.

In Neighborhood Search Algorithms (NSA) solutions are generated from one individual, who is a
current solution xn, and the neighbors of that solution {x} ⊆ N (xn). Using a local aggregation
mechanism for the objectives (often based on a weighted sum), a weight vector λ ∈ Λ, and an initial
solution x0, the procedure iteratively projects the neighbors into the objective space in a search direc-
tion λ by optimizing the corresponding parametric single objective problem. A local approximation of
the non-dominated frontier is obtained using archives of the successive potentially efficient solutions
detected. This generation mechanism is sequential along the frontier, producing a local convergence
towards the non-dominated frontier, and so such methods are called local convergence-based methods.
The procedure is repeated in diverse search directions in order to completely approximate the non-
dominated frontier. NSAs are well-known for their ability to locate the non-dominated frontier, but
they require more diversification than EA to cover the efficient frontier completely.
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The first approximation methods proposed for MOCO problems were “pure” NSA strategies and
were straightforward extensions of well-known mono-objective metaheuristics for dealing with non-
dominated points (e.g. MOSA, MOTS or the Sun method [40]). The methods that followed the pio-
neers were influenced by two important observations. The first is that NSAs converge rapidly towards
some efficient solutions, though they must be guided along the non-dominated frontier, while EAs
are quite capable of maintaining a diverse, well-covered solution population along the non-dominated
frontier though they often converge too slowly towards that frontier. Naturally, methods have been
proposed that combine components of both approaches in order to take advantage of the positive
aspects of both EAs and NSAs. These methods are called hybrid algorithms for MOPs.

The second observation is that, due to their specific combinatorial structure, MOCO problems
contain information that can be advantageously exploited during the approximation process. Single
objective combinatorial optimization is a very active field of research, and many combinatorial struc-
tures are well understood. Thus combinatorial optimization offers a useful source of knowledge for
multi-objective optimization. This knowledge (e.g., cuts for reducing the search space) is increasingly
taken into account in the design of efficient approximation methods for particular MOCO (like for
the bi-objective knapsack problem in Gandibleux and Fréville [17]). It is not surprising to see an
evolutionary algorithm – for global convergence – coupled with a tabu search algorithm – for the
exploitation of the combinatorial structure – within one approximation method.

1.3 Three resolution procedures for the biSPP

Despite this recent work on multi-objective metaheuristics, no other metaheuristic other than those
mentioned above has, to our knowledge, been proposed for the biSPP. This paper is a first response
to this lack. We approached the problem in three steps:

1. An adaptation of a classic multi-objective evolutionary metaheuristic was created for solving the
biSPP. Such a metaheuristic is considered to be generic solver that can be easily customized
to tackle a specific problem. Among the existing metaheuristics, SPEA (Strength Pareto Evo-
lutionary Algorithm, see Zitzler [44]) was chosen because this algorithm produced interesting
results on a similar problem, the bi-objective multi-dimensional knapsack problem. In addi-
tion to adapting SPEA for the biSPP, the basic SPEA scheme was also enriched to make the
algorithm slightly more aggressive. Called Aggressive-SPEA in this paper, this new algorithm
was designed to collect all potentially efficient solutions, and to perform a multidirectional re-
pair procedure among other things. A preliminary version of this algorithm has already been
presented by Gandibleux et al. [15] and Delorme et al. [7].

2. An efficient single-objective procedure for the SPP embedded in a parametric procedure was
also used to solve the biSPP (see Delorme et al. [7] for a preliminary version). Such an
approach has been mentioned by Jaszkiewicz [29] as a competitive alternative to multi-objective
metaheuristics. Delorme et al. [8] proposed an algorithm derived from the GRASP (Greedy
Randomized Adaptative Search Procedure, see Féo and Resende [12]) metaheuristic for the SPP.
The procedure, named λ-GRASP, was evaluated during this study.

3. A hybrid procedure, combining the Aggressive-SPEA with the λ-GRASP procedures according
to an original scheme, was also evaluated. The original version 1 of SPEA is reputed to have
difficulty approximating the extreme part of the efficient frontier. The λ-GRASP, on the other
hand, has difficulty producing a sufficiently dense set of potential efficient solutions without
being forced to perform a huge number of λ. Thus, combining the two seems a natural solution
to their individual deficiencies. λ-GRASP produces a good cover of the efficient frontier which
become the initial population used by Agressive-SPEA to complete (in terms of density and
distribution) the approximation along the efficient frontier.

The ability of these three procedures (the Aggressive-SPEA, the λ-GRASP, the hybrid proce-
dure) to solve a wide set of biSPP whose exact solutions are known was compared. This comparison
demonstrates the efficiency of the individual procedures to compute good solutions within a reason-
able time. Our experimental results confirm the superior efficiency of the hybrid procedure, due to
the complementarity of the Aggressive-SPEA and λ-GRASP procedures.
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The principles behind the A-SPEA, λ-GRASP and hybrid algorithms, respectively, are presented
in detail in sections 2, 3 and 4, along with the algorithmic description of the different operational
procedures. Section 5 describes and comments on the experimental instances, and reports and discusses
the numerical results. Section 6 concludes the discussion and presents several perspectives for this
work.

2 Description of the Aggressive-SPEA for the biSPP

Proposed by Zitzler [44], SPEA (Strength Pareto Evolutionary Algorithm) is a multi-objective evolu-
tionary metaheuristic based on a Pareto dominance-based evaluation. The main caracteristics of the
SPEA are: (1) the non-dominated solutions are stored in an external set (P̄ ) at each iteration, (2) the
concept of Pareto dominance is used for the scalar fitness assignment, and (3) evolutionary operators
(crossover and mutation) are used.

It should be noted that an improved version of this metaheuristic, SPEA2 (see Zitzler et al. [45]),
was recently proposed after we had begun our own work. SPEA2 incorporates a new fitness assignment
strategy, a density estimation technique, and an enhanced truncation method. It improves the observed
performances, notably for problems in higher dimensional objective spaces (i.e. with many objectives).
However, some of these improvements, such as the truncation technique, are not realy useful for the
biSPP since the instances of this problem contain a low number of efficient solutions.

2.1 General principles of the Aggressive-SPEA

The first procedure for solving biSPP, named Aggressive-SPEA (A-SPEA), is an enhancement of
SPEA. This procedure was briefly introduced by Gandibleux et al [15]; it is described in its entirety
for the first time in the following paragraphs. This enhancement can be seen as a generic metaheuristic
that can be applied to several combinatorial problems. The overall approach is described below (see
algorithm 1).

Initial population First, an initial population of size PopSize is computed for different weight
values of the scalarized function (see algorithm 2). PopSize was set to 50 in our experiments.
A greedy algorithm is performed on the PopSize’s different search directions corresponding
to the scalarized functions of the objective functions. A specific Saturation function for the
problem considered must be defined here (see section 2.2). Then, if the expected population size
is not reached, for example because identical solutions are found in several search directions,
some randomized saturated solutions are added. A specific RandomSaturation function for
the problem considered must be defined here (see section 2.2). All these solutions are different
in terms of their decision vector (xi), thus the initial population can not contain any identical
solutions.

Fitness value At the beginning of each iteration loop, the set of potentially efficient solutions (de-
noted by P̄ in the A-SPEA, a synonym of XPE for the general case) is updated. Then, indi-
viduals from the population of the dominated individuals population P , and the population of
potentially efficient solutions P̄ , are evaluated interdependently and are assigned fitness values.
The fitness value is determined by a function (see algorithm 3) based on Pareto dominance and,
to preserve diversity, a Pareto niching method:

• the fitness of a non-dominated solution is determined by the number of solutions that it
dominates, and

• the fitness of a dominated solution is determined only by the fitness of the non-dominated
solution(s) that dominate it.

Selection Two individuals are selected randomly from the population of dominated individuals and
the population of potentially efficient solutions if they are not already in the mating pool (P ′).
These individuals compete in a binary tournament, which determines the best candidate accord-
ing to its fitness value. This individual is then added to the mating pool (function PopSelection,
see algorithm 3).
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function A−SPEA(PopSize, CrossoverProbability, MutationProbability, stoppingCondition)
P ← PopInitialize(PopSize)
P ← ∅
repeat

P
′ ← {s ∈ P ∪ P, @s′ ∈ P ∪ P, s′ � s}

P ← P ∪ {s ∈ P , s /∈ P
′} \ P

′

P ← P
′

P ′ ← PopSelection(PopSize, P, P )
P ′′ ← ∅
while |P ′| > 1 loop

(s1, s2)← RandomSelect(s ∈ P ′), s1 6= s2

P ′ ← P ′ \ {s1, s2}
if CrossoverProbability

(s3, s4)← Crossover(s1, s2)
(s3, s4)← (Repair(s3), Repair(s4))
P ′′ ← P ′′ ∪ {Saturation(s3, 0), Saturation(s3,

z1(s3)
z1(s3)+z2(s3)),

Saturation(s3, 1), Saturation(s4, 0),
Saturation(s4,

z1(s4)
z1(s4)+z2(s4)), Saturation(s4, 1)}

else
P ′′ ← P ′′ ∪ {s1, s2}

endIf
endWhile
P
′ ← {s ∈ P ′′, @s′ ∈ P ∪ P ′′, s′ � s}

P ′′ ← P ′′ ∪ P ′

P ← ∅
while P ′′ 6= ∅ loop

s1 ← RandomSelect(s ∈ P ′′)
P ′′ ← P ′′ \ {s1}
s1 ← Repair(Mutation(s1,MutationProbability))
P ← P ∪ {Saturation(s1, 0), Saturation(s1,

z1(s1)
z1(s1)+z2(s1)), Saturation(s1, 1)}

endWhile
P ← P ∪ P

′

until stoppingCondition

P ← {s ∈ P ∪ P, @s′ ∈ P ∪ P, s′ � s}
P
′ ← ∅

P
′ ← P

′ ∪ {LocalSearch(s, P )},∀s ∈ P

P ← {s ∈ P ∪ P
′
, @s′ ∈ P ∪ P

′
, s′ � s}

P ← P ∪ {AggressiveLocalSearch(RandomSelect(s ∈ P , z1(s) = maxs′∈P (z1(s′))), z1)}
P ← P ∪ {AggressiveLocalSearch(RandomSelect(s ∈ P , z2(s) = maxs′∈P (z2(s′))), z2)}
return P

end A−SPEA

Algorithm 1: The Aggressive-SPEA algorithm
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function PopInitialize(PopSize)
xi ← 0,∀i ∈ I
P ← ∅; P ← P ∪ {Saturation(x, i−1

PopSize−1)},∀i ∈ {1, . . . , PopSize}
while (|P | < PopSize) loop

P ← P ∪ {RandomSaturation(x)}
endWhile
return P

end PopInitialize

Algorithm 2: The initial population generator algorithm

function PopSelection(PopSize, P, P )
Fitnesss ← |{s′∈P,s�s′}|

1+|P | ,∀s ∈ P

Fitnesss ← 1 +
∑

s′∈P ,s′�s Fitnesss,∀s ∈ P

P ′ ← ∅
while |P ′| < min(PopSize, |P ∪ P |) loop

(s1, s2)← RandomSelect(s ∈ P ∪ P \ P ′)
if Fitnesss1 < Fitnesss2

P ′ ← P ′ ∪ s1

else
P ′ ← P ′ ∪ s2

endIf
endWhile
return P ′

end PopSelection

Algorithm 3: The population selection algorithm

Evolutionary operators Two parents are chosen to generate two offspring using a one point crossover
operator with a point randomly selected from an ordered set of the biSPP variables (see algo-
rithm 4). This operator was applied with a probability CrossoverProbability equal to 80% in
our experiments. Then a mutation operator (see algorithm 5) switches the value of each variable
in each solution in the population P ′ according to the probability MutationProbability, which
was equal to 4% in our experiments.

function Crossover(s1, s2)
i∗ ← RandomSelect(i ∈ I \ {1, n})
s3(i)← s1(i),∀i ∈ {1, . . . , i∗}; s3(i)← s2(i),∀i ∈ {i∗, . . . , n}
s4(i)← s2(i),∀i ∈ {1, . . . , i∗}; s4(i)← s1(i),∀i ∈ {i∗, . . . , n}
return (s3, s4)

end Crossover

Algorithm 4: The crossover algorithm

Repair and saturate The solutions generated by the crossover and mutation operators may be non-
feasible, in which case, the solution must be repaired so that only feasible solutions are in the
population (see section 2.2 for the description of the specific algorithm used for the biSPP).
The potentially efficient solutions are always maintained in the population, especially those
generated by the crossover operator, which was not true for the original SPEA. After each
repair, a Saturation function is also applied to the individuals in three search directions: z1,
z2, and a combination of the two, computed according to the value of the current solution for
the two objectives. The saturation on z1 and z2 permits the algorithm’s performance to be
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function Mutation(s,MutationProbability)
for i ∈ I loop

if MutationProbability
s(i)← 1− s(i)

endIf
endFor
return s

end Mutation

Algorithm 5: The mutation algorithm

improved for extremal solutions (the best solution for z1 and for z2). These saturations were
not part of the original SPEA algorithm.

Local search Two local search components, designed specifically for the problem under consideration,
were also added to the basic SPEA (see Local search components for the biSPP in section 2.2).
There were two reasons for this addition: to prevent the holes in the approximation of the
efficient frontier that were observed during preliminary experiments, and to improve the ability
of the A-SPEA to detect good extremal solutions. According to Moscato [32] A-SPEA falls in the
class of memetic algorithms. The first local search is applied to every non-dominated solution,
and yields all the non-dominated solutions for the neighborhood of each initial solution. It is
applied many times and consumes little CPU time. The second local search is mono-objective.
It is only applied to the extremal solutions, with the goal of obtaining more extremal solution by
applying an aggressive local search in the direction z1 (resp. z2) from the current best solution
for z1 (resp. z2).

2.2 Specific components of the A-SPEA for the biSPP

As indicated above, some specific components must be defined in order to obtain an efficient algorithm
for a particular problem. The components considered for the biSPP are described below:

Repair component Any non-feasible solution can be repaired (see algorithm 6) using a greedy repair
strategy, in which the best variable that can be set to 0 is chosen at each iteration, according
to an evaluation based on an objective function (a combination of the two objectives) and the
number of constraints upon which this variable acts. This is repeated as long as the solution
remains non-feasible.

function Repair(x)
λRep ← z1(x)/(z1(x) + z2(x))
JRep ← {j ∈ J,

∑
i∈I ti,jxi > 1}

I1 ← {i ∈ I, xi = 1 ∧ (∃j ∈ Jrep, ti,j = 1)}
Evali ← (λRepc

1
i + (1− λRep)c2

i )/(
∑

j∈J ti,j),∀i ∈ I1

while (JRep 6= ∅) loop
i∗ ← RandomSelect(i ∈ I1, Evali = mink∈I1 (Evalk))
xi∗ ← 0
I1 ← I1 \ {i∗}
I1 ← I1 \ {i ∈ I1, @j ∈ JRep, ti,j = 1}
JRep ← JRep \ {j ∈ JRep,

∑
i∈I ti,jxi ≤ 1}

endWhile
return x

end Repair

Algorithm 6: The repair algorithm
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Saturation components A solution is saturated when no variable can be set to 1 without losing
feasibility. For the Saturation algorithm (see algorithm 7), the best variable that can be set to
1, of those that were set to 0, is chosen in the same way as the variables in the repair function
were chosen. For the RandomSaturation algorithm (see algorithm 8), the variables that can be
set to 1 are randomly selected .

function Saturation(x, λ)
I0 ← {i ∈ I, xi = 0}
Evali ← (λc1

i + (1− λ)c2
i )/(

∑
j∈J ti,j),∀i ∈ I0

ISat ← {i ∈ I0,∀j ∈ J, ti,j = 1⇒
∑

k∈I tk,jxk = 0}
while (ISat 6= ∅) loop

i∗ ← RandomSelect(i ∈ ISat, Evali = maxk∈ISat
(Evalk))

xi∗ ← 1
ISat ← ISat \ {i∗}
ISat ← ISat \ {i ∈ ISat,∃j ∈ J, ti,j + ti∗,j > 1}

endWhile
return x

end Saturation

Algorithm 7: The saturation algorithm

function RandomSaturation(x)
I0 ← {i ∈ I, xi = 0}
ISat ← {i ∈ I0,∀j ∈ J, ti,j = 1⇒

∑
k∈I tk,jxk = 0}

while (ISat 6= ∅) loop
i∗ ← RandomSelect(i ∈ ISat)
xi∗ ← 1
ISat ← ISat \ {i∗}
ISat ← ISat \ {i ∈ ISat,∃j ∈ J, ti,j + ti∗,j > 1}

endWhile
return x

end RandomSaturation

Algorithm 8: The random saturation algorithm

Local search components These algorithms are based on a 1 − 1 exchange neighbourhood (see
algorithm 9) which means that one variable is switched from 1 to 0 when another variable is
switched from 0 to 1. The LocalSearch function (see algorithm 10) is applied to every non-
dominated solution, whereas the AggressiveLocalSearch function (see algorithm 11) is applied
only to extremal solutions. This second function is a variation in which 1 − 1 exchanges are
performed iteratively on the current solution and its best neighbour until no better solutions
can be found in the neighborhood.

3 Description of the λ-GRASP for the biSPP

The second step in our approach is based on an heuristic algorithm for the mono-objective SPP, derived
from the GRASP metaheuristic (Greedy Randomized Adaptative Search Procedure). Proposed by
Féo and Resende [12]), GRASP has been applied to a wide range of optimization problems, including
academic and industrial problems in scheduling, routing, logic, partitioning, location and layout, graph
theory, assignment, manufacturing, transportation, telecommunications, electrical power systems, and
VLSI design. An extensive annotated GRASP bibliography has been proposed by Festa and Resende
[13].
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function 1− 1exchanges(x)
I0 ← {i ∈ I, xi = 1}
N ← ∅
for i0 ∈ I0 loop

s← x
si0 ← 0
I1 ← {i ∈ I,∀j ∈ J, ti,j = 1⇒

∑
k∈I tk,jsk = 0}

for i1 ∈ I1 loop
s′ ← s
s′i1 ← 1
N ← N ∪ {s′}

endFor
endFor
return N

end 1− 1exchanges

Algorithm 9: The 1-1 exchange algorithm

function LocalSearch(x,XPE)
N ← 1− 1exchanges(x)
NSat ← ∅
for s ∈ N loop

if @s′ ∈ NSat ∪XPE , s′ � s}
NSat ← NSat ∪ {Saturation(s, z1(s)/(z1(s) + z2(s)))}

endIf
endFor
return {s ∈ NSat, @s′ ∈ NSat, s

′ � s}
end LocalSearch

Algorithm 10: The local search algorithm

function AggressiveLocalSearch(x, z)
s∗ ← x
NPop ← ∅
repeat

N ← 1− 1exchanges(s∗)
NSup ← ∅
for s ∈ N loop

if z(s) > z(s∗)
NSup ← NSup ∪ {Saturation(s, z)}

endIf
endFor
NPop ← NPop ∪NSup

s∗ ← RandomSelect(s ∈ NSup, z(s) = maxs′∈NSup
z(s′))

until NSup = ∅
return {s ∈ NPop, @s′ ∈ NPop, s

′ � s}
end AggressiveLocalSearch

Algorithm 11: The aggressive local search algorithm
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Basically, GRASP is a multistart two-phase metaheuristic for combinatorial optimization problems.
The first phase is a construction phase that builds an initial solution using a greedy randomized
procedure, whose randomness allows solutions to be obtained in different areas of the solution space.
The second phase is a local search phase that improves these solutions. This two-phase process is
reiterative. For a general overview of GRASP, see the article by Pitsoulis and Resende [35]. As
presented and discussed in Resende and Ribeiro [37], several new components have extended the
GRASP scheme (e.g. reactive GRASP, parameter variations, bias functions, memory and learning,
improved local search, path relinking, and hybrids).

3.1 General principles of the λ-GRASP

function λ−GRASP (stoppingCondition, SearchDirection)
P ← ∅
graspStopCnd← ChoosingCondition(stoppingCondition, SearchDirection)
for λ ∈ {1, . . . , SearchDirection} loop

Pt ← {GRASP (λc1 + (1− λ)c2, graspStopCnd)}
P ← P ∪ {i ∈ Pt, @j ∈ P, j � i}
P ← P \ {i, ∃j ∈ P, j � i}

endFor
return P

end λ−GRASP

Algorithm 12: The bi-objective λ-GRASP algorithm

Our idea is to embed the GRASP heuristic in a parametric procedure so that it can be performed
successively and independently in a wide set of search directions obtained using a scalarization func-
tion. The number of directions is determined by the parameter SearchDirection. The value of this
parameter must be high enough to avoid poor coverage of the efficient frontier obtained, but low
enough to allow the time needed for each resolution and to keep the obtained solutions near the ef-
ficient frontier. Preliminary experiments yielded a compromise value equal to 20. This low value is
mainly due to the low number of efficient solutions for the biSPP. A ChoosingCondition function must
be designed to compute a stopping condition for a single mono-objective GRASP resolution based on
the stopping condition of the overall process and the number of search directions to be considered.
For example, if the stopping condition is a time limit, the following formula is possible:

graspStopCnd← stoppingCondition

SearchDirection

Because the resolution method used is an heuristic method, applying such a scalarization function does
not prevent us from obtaining non-supported efficient solutions, whereas using an exact algorithm
would do so. All the potentially efficient solutions produced throughout the computation of all λ-
GRASP phases are maintained in the solution population, even those that are not the best according
to the scalarized objective function under consideration.

3.2 Specific components of the GRASP for the SPP

Our greedy randomized procedure was proposed and fully described by Delorme et al [8]. It builds
a solution from the trivial feasible solution, xi = 0,∀i ∈ I. Some variable values are set to 1, thus
maintaining a feasible solution. Changes are made to only one variable at each iteration. To increase
the objective function, the variables that have a minimum number of constraints and a maximum value
are prioritized, but the choice among the variables at the top of the priority list is random according to
a threshold parameter α ∈ [0, 1]. Changes stop when a variable can not be set to 1 without the solution
becoming non-feasible. The local search procedure is based on 0− 1 exchanges, 1− 1 exchanges, 2− 1
exchanges and 1−2 exchanges. The k−p exchange neighbourhood of a solution x is the set of solutions
obtained from x by changing the value of k variables from 1 to 0, and changing p variables from 0 to
1. This procedure was implemented using a first-improving strategy (i.e. the first neighbour whose
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value is better than the current solution is selected). Whenever an exchange is accepted, the local
search re-starts at this new solution. The local search stops when no further improving exchanges are
possible.

Three extensions of GRASP were also integrated into this heuristic. The first extension, called
reactive GRASP, self-adjusts the parameter α according to the quality of the solutions previously
obtained. At the beginning of the process, 5 values – 0.0, 0.5, 0.75, 0.9 and 1.0 – are considered with
an equal probability for the parameter α. The second extension adds an intensification phase based
on path relinking (see Glover and Laguna [24]) at each GRASP iteration. With this procedure, paths
from one elite solution to another are generated in the solution space, and explored to obtain better
solutions. Finally, the third extension completes the variable evaluation with a learning process that
penalizes the variables involved in often saturated constraints, thus acting as a diversification process.

4 Hybrid algorithm for the biSPP

The third step in our approach is based on an original hybridization of the two previous algorithms.
Modern approximation methods for MOCO problems appear more and more frequently as problem-
oriented techniques (i.e., by selecting components that are advantageously combined to create an
algorithm that can tackle the problem in the most efficient way). By nature, such an algorithm is a
hybrid, including evolutionary components, neighborhood search components, and problem-dependent
components (see Gandibleux and Ehrgott [16]).

4.1 Hybrid approaches reported in the literature

The hybridizations introduced in multi-objective approximation methods are, in chronological order:

1. EA components integrated into NSA.
The use of a population of individuals provides global information about the current approxima-
tion and lets that information drive local search processes in order to “guarantee” good coverage
of the non-dominated frontier. Using, for example, mechanisms based on notions of repulsion
between non-dominated points, the search is guided toward sub-areas of the frontier that (i)
contain a high density of solutions, or (ii) have not yet been explored. This is the principle
behind the PSA method proposed by Czyzak and Jaszkiewicz [3] and the TAMOCO method
proposed by Hansen [25].

2. EA as master strategy, NSA as secondary strategy.
Here, EA pilots the search procedure, and activates an NSA. The main idea is to make the
evolutionary algorithm very aggressive at improving the good solutions resulting from the evo-
lutionary operators for as long as possible. The NSA can, for example, be a depth-first search
method, or a basic (or truncated) tabu search. This is the principle behind the memetic version
of MOGA proposed by Murata and Ishibuchi [33], MOGLS proposed by Jaszkiewicz [28], MGK
proposed by Gandibleux et al. [19], GTSMOKP proposed by Barichard and Hao [2].

3. Alternating schemes using EA and NSA as blackboxes.
Ben Abdelaziz et al. [1] have proposed a hybrid algorithm that uses both EA and NSA in-
dependently. The goal of the EA (a genetic algorithm) is to produce an initial diversified
approximation, which is then improved by the NSA (a tabu search algorithm). This algorithm
has been applied to the multi-objective knapsack problem.

4. EA + NSA + problem-dependent components.
The most recent hybrid procedures integrate EA and NSA components, as well as problem-
dependent components, in order to design a powerful approximation method for MOCO prob-
lems. Gandibleux et al. [20, 22] have proposed a population-based method in which a crossover
uses a “genetic” map of the population with a path relinking operator that generates new so-
lutions by exploring the trajectories connecting solutions. This procedure has been applied
to approximating the non-dominated frontier of assignment and knapsack problems with two
objectives.
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5. Approximation and exact procedures in a hybrid method.
Gandibleux and Fréville [17] have proposed a procedure for the bi-objective knapsack problem
combining an exact procedure for reducing the search space with a tabu search process for
identifying the potentially efficient solutions. This reduction principle is based on cuts that
eliminate parts of the decision space where (probably) no exact efficient solution exist. The
tabu search is triggered on the reduced space, dynamically updating the bounds in order to
guarantee the tightest value at any time.
This type of hybrid can also apply if, in an exact method for generating the non-dominated
points, the exact method needs good quality bounds. For example in the seek and cut method
for solving the assignment problem proposed by Przybylski et al. [36], the “seek” computes a
local approximation of the non-dominated frontier (i.e., bounds are computed by a population-
based algorithm coupled with path relinking) which is then used to “cut” the search space of
an implicit enumeration scheme.

4.2 A hybrid algorithm for the biSPP based on NSA and EA blackboxes

The hybrid algorithm proposed and tested in this paper falls in the third category of the methods
described in the section 4.1, in which NSA and EA interact independently. However, this algorithm
is based on an original scheme in order to make the most of the main assets of our procedures (see
Figure 2).

z1

z2

z1

z2

λ-GRASP A-SPEA

Figure 2: Illustration of the kind of approximation produced by λ-GRASP and A-SPEA

Our hybrid algorithm aims to compute an approximation that will insure good coverage, density
and distribution of the approximate solutions along the efficient frontier. It works in two main phases
with the available CPU time being split equally between the two:

1. During the phase 1, a known efficient heuristic for the single objective problem embedded in a
parametric procedure (λ-GRASP) computes an initial set of very good solutions P0. This set
contains all the potentially efficient produced by the algorithm. It is completed by the five best
solutions found for each λ value and each α value (i.e. up to 500 solutions in theory, but less in
practice, identical solutions being removed). The approximation obtained is expected to provide
good coverage (i.e. an approximation that is well distributed along the efficient frontier).

2. During the phase 2, a multi-objective EA integrating a local search (A-SPEA) is performed
on the population generated in the first phase to improve the set XPE of potentially efficient
solutions in terms of solution distribution and density.

Practically, the only difference between the A-SPEA described in algorithm 1 and the hybrid
algorithm is located at line 2, where the function PopInitialize is replaced with the function λ −
GRASP .

Thus, the λ-GRASP algorithm could be seen as a simple initialization phase within the hybrid.
However, the CPU time allocated to the first phase and the high quality of the solutions produced
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demonstrates its importance in our hybrid algorithm. In fact, even though the time is equally split
between the two procedures, the A-SPEA algorithm acts as a post-optimization phase, which intensifies
the search over the efficient frontier and densifies the population of potentially efficient solutions
obtained. To our knowledge, this type of hybridization using an evolutionary algorithm to intensify
the research has not yet been described in the literature.

5 Computational results

5.1 Numerical instances and experimental conditions

This section presents the computational results obtained for all the algorithms presented in this paper.
A-SPEA was implemented in C langage (gcc 3.0.4), and λ-GRASP in Ada langage (Gnat 3.14). Both
were run on an Pentium III with 800 MHz. We considered 120 numerical instances with the following
characteristics:

• 100 or 200 variables,

• from 300 to 1000 constraints,

• a density of non-null elements ranging from 1% to 3% of the constraint matrix T ,

• six classes of objective functions:

A : two randomly generated objectives with
c1
i = rnd[1..100], c2

i = rnd[1..100],∀i = 1, . . . , n;

B : one randomly generated objective and one symmetrically sound objective
c1
i = rnd[1..100],∀i = 1, . . . , n; c2

n−i+1 = c1
i ,∀i = 1, . . . , n;

C : two randomly generated objectives with patterns
l1 = rnd[1.. n

10 ], l2 = rnd[1.. n
10 ], . . .;

c1
1 = c1

2 = . . . = c1
l1

= rnd[1..100]; c1
l1+1 = c1

l1+2 = . . . = c1
l1+l2

= rnd[1..100]; . . .
(idem for c2

i ,∀i = 1, . . . , n)

D : one randomly generated objective with patterns and one symmetrically sound objective
l1 = rnd[1.. n

10 ], l2 = rnd[1.. n
10 ], . . .;

c1
1 = c1

2 = . . . = c1
l1

= rnd[1..100]; c1
l1+1 = c1

l1+2 = . . . = c1
l1+l2

= rnd[1..100]; . . .
c2
n−i+1 = c1

i ,∀i = 1, . . . , n;

E : one unicost objective and one randomly generated objective
c1
i = 1, c2

i = rnd[1..100],∀i = 1, . . . , n;

F : one unicost objective and one randomly generated objective with patterns
c1
i = 1,∀i = 1, . . . , n and

l1 = rnd[1.. n
10 ], l2 = rnd[1.. n

10 ], . . .;
c2
1 = c2

2 = . . . = c2
l1

= rnd[1..100]; c2
l1+1 = c2

l1+2 = . . . = c2
l1+l2

= rnd[1..100]; . . .

Thus, a wide range of difficult instances were considered. All these instances are available in the
MCDMLib, a collection of MOCO problems instances [31].

We obtained the minimal complete set of efficient solution for these instances with a dichotomic
procedure (see Degoutin and Gandibleux [5]) using Cplex [27] to solve the following mono-objective
parametrical problem:

max
{∑2

q=1 λqz
q(x) : x ∈ X

}
with 0 ≤ λq ≤ 1∀q ∈ Q and

∑2
q=1 λq = 1 and two additionnal

constraints, c1x > z1(x(B)) and c2x > z2(x(A)), where x(A) and x(B) are respectively two optimal
solutions for z1 and z2 of the scalarized problem.

However, even for small sized instances, the CPU time needed to solve this problem exactly can
be exorbitant (up to 360 000 seconds on the computer used for this paper).

For each instance, our algorithms performed 16 independant runs with the parameters indicated
in section 2, 3 and 4, and a time limit as stopping condition. This time limit was based on a reference
time computed according to the following formula: TRef = 10−3 ∗ n2 seconds. Five different time
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limits were considered: TRef , 2 ∗ TRef , 3 ∗ TRef , 4 ∗ TRef and 5 ∗ TRef . This allow us to monitor the
evolution of the algorithms performance in consideration with the time consumed. This led us to set
time limits from 10s to 50s for instances with 100 variables and from 40s to 200s for instances with 200
variables. All the results presented are average results among the 16 runs, except when it is clearly
indicated otherwise.

In order to measure the quality of the approximation produced, and since it is very difficult
to compare two potentially efficient solutions sets, three indicators were used to characterize each
approximation:

1. the percentage of exact efficient vectors found (M1 proposed by Ulungu et al. [42]),

2. the euclidean distance to the efficient frontier, and

3. the hypervolume defined by the solution set (S-metric proposed by Zitzler and Thiele [46]).

To facilitate the comparisons for the whole set of instances (or for some subset of the instances),
the hypervolume values are indicated as percentages of the efficient frontier hypervolume value.

5.2 A-SPEA versus λ-GRASP

The results obtained with our A-SPEA and λ-GRASP algorithms are presented in figures 3, 4 and 5.
These results are the average results for all the instances considered. Overall, they seem fairly good,
since more than 60% of the efficient solution were found in a very short time, and up to 80% were
found with more time. The value of the two other indicators (described in section 5.1) were also good.
With enough time, the distance to the efficient frontier had a value less than 5, which is very low with
regard to the optimal value of the objective function considered (often more than 2,000 since the value
of a single item can be up to 100), and more than 98% of the efficient frontier value for the S-metric
indicator. Two main observations can be made:

1. Though A-SPEA seems to be better than λ-GRASP in terms of the distance indicator, the
opposite is true for the hypervolume indicator. The two algorithms had nearly equivalent per-
fomances in terms of the percentage of efficient solutions found. This demonstrates that an
analysis should not be based on a single indicator. In fact, A-SPEA produces an approximation
that is located near the efficient frontier and that has a good solution density, but appears to
have difficulty finding extremal solutions, despite the extensions of the basic SPEA (see section
2). Without these extensions the results obtained for extremal solutions were worse. On the
other hand, λ-GRASP was able to find the extremal solutions, but the solution density was
lower. Using a higher number of search directions would correct this problem, but this would
result in a higher distance from the efficient frontier and less efficient solutions. Figure 6 rep-
resents the approximations obtained with the two algorithms on one run of one instance, and
illustrates the differences between the approximations quite well.

2. the approximations produced by λ-GRASP improve more quickly than those of A-SPEA when
given more time. The learning/diversification process included in λ-GRASP permits more new
solutions to be generated, and thus more new good solutions. On the other hand, the A-SPEA
algorithm seems to have trouble diversifying its population after a certain time.

In addition, there is an important performance gap for λ-GRASP between the instances of famillies
A to D (with two weighted objectives) and those in famillies E and F (with a weighted and an unicost
objective). Figure 7 shows the average distance to the efficient frontier obtained with λ-GRASP for
these two famillies (the first one is called “weighted” and the second, “unicost”). The gap is important
and does not decrease much when more computational time is added. The same is true for the other
two indicators. However A-SPEA does not appear to have a performance gap. In fact, it seems that
A-SPEA produces slighly better performances on the unicost instances.

We do not have a complete explanation for this phenomenon, but it is most likely due to the fact
that we do not normalize the two objective functions when the scalarization function is computed. For
the unicost instances, the important range difference between the two objective functions may also be
the source of the problem.
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Figure 7: Average distance to the efficient frontier for the GRASP algorithm

The percentage of efficient solutions found by λ-GRASP in the maximal time in function of the
ratio of supported efficient solutions (SE

E ) for the instances performed (see table 1) show no signifi-
cant performance difference between the instances with a large proportion of non-supported efficient
solutions and the others. This confirms that using a scalarization function with an heuristic method
allows both non-supported and supported efficient solutions to be found.

SE
E 0− 24% 25− 49% 50− 74% 75− 99% 100%

M1 62.8% 89.9% 83.4% 75.6% 87.2%

Table 1: Percentage of efficient solutions found by λ-GRASP

5.3 Impact of the hybridization

The average results obtained with our hybrid algorithm, and the A-SPEA and λ-GRASP algorithms,
are reported in figures 8, 9 and 10. Overall, the hybrid appears to perform much better than the other
two, whatever the indicator or the computational time considered:

• more than 88% of the efficient solution are found in a very short time and up to more than
95% are found when more time is given, which represents a positive gap of more than 15 points
compare to the other two algorithms,

• the distance to the efficient frontier is around 2 with the lower time and down to less than 1
with more time, which is more than three times better than A-SPEA and five times better than
λ-GRASP,

• more than 99,6% of the efficient frontier value for the S-metric indicator, which represents a
slight gap with λ-GRASP and a larger one with A-SPEA (around 1 point).

In fact, the hybrid algorithms performs better than the two others, even when they perform very well
(i.e. the distance indicator for A-SPEA and S-metric for λ-GRASP). It seems to be able to effectively
compensate for the weaknesses of the algorithms that make it up.
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Furthermore, the poor performance of λ-GRASP on the unicost instances is nearly inexistant with
the hybrid algorithm. Figure 11 shows the average distance to the efficient frontier obtained with
the hybrid algorithm in the two famillies of instances (see figure 7 for the results with λ-GRASP).
Depending of the computational time available, the hybrid is slightly better on the weighted instances,
but the difference does not seem significant and is very low in comparison to those observed with λ-
GRASP.

Looking at the worst case results instead of average results (i.e. the results obtained on the worst
run for the worst instance), the hybrid algorithm still performs better than the other two. Figure
12 shows the percentage of efficient solutions found for this worst case for the three algorithms (NB:
this worst case can correspond to different instances for each algorithm). Though this percentage is
nearly null for A-SPEA and λ-GRASP, it can be as high as 40% for the hybrid algorithm with enough
computational time, which can be considered as a good value. Also, this value increases strongly as
the computational time increases. The same observation can be made for the two other indicators:

• The distance to the efficient frontier can be less than 20 with enough computational time. A
significant improvement appears when the time available is increased.

• The value for the S-metric indicator is always more than 94 % of the efficient frontier whatever
the computational time considered, with a slight increase given more time.

In all the cases (i.e. for each indicator and each time considered), the hybrid algorithm produces better
results than the two other algorithms.

6 Conclusion and perspectives

In this paper, we presented two heuristic methods for approximating the efficient frontier of the bi-
objective set packing problem, as well as an original hybrid method. These methods are all based on
the SPEA and GRASP metaheuristics. The results obtained with the two heuristics seem fairly good
despite the specific weakenesses inherent to each one. However, the most important thing is that they
are complementary and produce very good results when joined together in a hybrid. This hybrid was
quite efficient, thanks to the learning process that is part of λ-GRASP, which produces a population
that is diversified enough to succesfully initialize SPEA.

Obviously, the two heuristics algorithms could be improved independently. This is especially true
of the λ-GRASP, which could be made more efficient by using a path relinking phase with solutions
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generated in two different search directions (see Gandibleux et al. [21]). It would also be interesting
to see the performances obtained with the three algorithms on larger instances, even though the
performance would be more difficult to evaluate due to the impossibility of solving the problem exactly,
making the efficient frontier hard to obtain. Extending these algorithms to the multi-objective case
would also be useful, but would produce the same evaluation difficulties since there is no exact method
for this case.

However, the most promising possibilities involve the hybrid method. For example, the time
repartition between λ-GRASP and A-SPEA, which is arbitrary set equal in our algorithm, could
become a variable parameter in the method. Actually, it seems that, since λ-GRASP makes better
use of additional time, giving more time in this phase could improve the performance. Moreover, it
would be interesting to see if this new scheme of hybridization can succesfully be extended to other
MOCO problems.

This hybrid algorithm acts as a scheme of collaboration between solvers, and combines scalarizing
functions and Pareto dominance techniques to move a population towards the efficient frontier. A
closer look at this combination could provide interesting information for future use in the design of an
even more effective derived algorithm, blending these techniques.
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tiObjectif (PM20), Angers, France, mai 2002. In french.

[6] Xavier Delorme. Modélisation et résolution de problèmes liés à l’exploitation d’infrastructures
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